一総説—

ジアシルグリセロールキナーゼ β (DGKβ) 欠損マウスを用いた 高次脳機能における DGKβ の機能解析

石坂光絵, 原英彰*

要約:ジアシルグリセロールキナーゼ (DGK) はジアシルグリセロールをリン酸化し、ホスファチジン酸へと変換する酵素である。現在までに哺乳類において 10 種類のアイソフォームが同定されており、脳において強く発現していることが知られている。DGKβ は I 型に分類される DGK アイソフォームであり、マウス脳においては、嗅球、皮質、海馬、線条体において特に強く発現している。しかしながら、その機能については不明な点が多いため、DGKβ 欠損マウスを用いて表現型解析を行った。DGKβ 欠損マウスでは、躁病様の表現型が認められ、これら表現型は既存の躁病治療薬で改善されることが明らかとなった。また、DGKβ 欠損マウスは多動性に加えて注意欠損様の行動が認められ、注意欠陥多動性障害(ADHD)治療薬メチルフェニデートは注意欠損様の行動を改善することが示唆された。さらに、DGKβ 欠損マウスに痙攣誘発薬を投与したところ、痙攣行動の増悪が認められ、その一因に海馬における抑制性神経細胞の減少が考えられる。以上の結果より、DGKβ の欠損が躁病をはじめとする様々な疾患に関与している可能性およびこれら疾患の病態解明・治療薬探索にDGKβ 欠損マウスが有用であると考えられる。

索引用語:ジアシルグリセロールキナーゼβ、高次脳機能、欠損マウス

The Role of Diacylglycerol Kinase β (DGK β) in Higher Brain Function: Behavioral Analyses of DGK β Knockout Mice

Mitsue ISHISAKA, Hideaki HARA*

Abstract: Diacylglycerol kinase (DGK) is an enzyme that converts diacylglycerol to phosphatidic acid. To date, ten isoforms of DGKs have been identified in mammals, and it is reported that DGKs is strongly expressed in the brain. DGK β , a type of DGK, is expressed in the olfactory bulb, cortex, hippocampus, and striatum. The roles of DGK β are still unknown. We generated the DGK β knockout (KO) mice and investigated the phenotypes of DGK β KO mice. DGK β KO mice showed mania-like behaviors such as hyperactivity and reduced anxiety. These mania-like behaviors were ameliorated after commonly used medication for mania were administered. Furthermore, DGK β KO mice showed attention-deficit behavior, which was ameliorated by treatment with methylphenidate. Furthermore, DGK β KO mice showed increased seizure sensitivity due to the decreased numbers of depressor neurons in the hippocampus. These results suggest that deficit of DGK β is involved in various neurological diseases including mania, and DGK β KO mice would be useful to elucidate the pathogenesis and find the therapeutic targets in these disorders of the central nervous system.

Key phrases: diacylglycerol kinase β , higher brain function, knock-out mice

1. 緒言

細胞膜上に存在する Gq タンパク質共役型受容体が成長 因子やホルモン、神経伝達物質などによる刺激を受けると、 ホスホリパーゼ C (PLC) の活性化が生じ、ホスファチジ ルイノシトール-4,5-二リン酸からジアシルグリセロール (DG) が産生される¹⁾。DG は直接的にプロテインキナーゼ C (PKC) と結合し、PKC を活性化する²⁾。PKC の他にも、

岐阜薬科大学生体機能解析学大講座薬効解析学研究室(〒501-1196 岐阜市大学西1丁目 25-4) Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu

501-1196, JAPAN)

Fig. 1. Gq-protein-coupled receptor downstream signaling.

GPCR : G-protein-coupled receptor, G : G-protein, PLC : phospholipase C, PIP_2 : phosphatidylinositol 4,5-bisphosphate, IP_3 : inositol 1,4,5-trisphosphate, DG : diacylglycerol, DGK : diacylglycerol kinase, PA : phosphatidic acid

DG は RAS グアニルヌクレオチド放出タンパク質など、 様々なタンパク質の活性化にも関与している³。

そして DG は、ホスファチジン酸 (PA) へと変換され、PA もまた mammalian target of rapamycin (mTOR) やRaf-1キナ ーゼなどの様々なタンパク質の活性化に関与している⁴。 ジアシルグリセロールキナーゼ (DGK) はこの DG から PA への変換を行う酵素であり、細胞内の DG と PA のバラ ンスを制御することで他の細胞内シグナルに大きな影響 を与えていると考えられる (Fig. 1)⁵。

現在までに、哺乳類においては、10 種類の DGK アイソ フォームが同定されている⁶⁻¹⁵⁾。DGK の多くは、特に中枢 神経系に多く発現していることが知られているが、その構 造や発現分布、機能は多種多様である (Fig. 2)¹⁶⁻²²⁾。

中でも、I型 DGK に分類される DGKβ の発現は神経細 胞の細胞表面および細胞骨格に局在しており、とくに皮質、 線条体、海馬、嗅球において強く認められ、脳での発現部 位はドパミン投射部位と一致している⁷⁾。また、線条体の 中型有棘ニューロンにおいて、DGK β はドパミン D1、D2 受容体と共発現している²³⁾。これらの報告より、DGKβ が ドパミン神経伝達において何らかの役割を果たしている 可能性が考えられる。

ドパミン神経伝達の機能不全は、パーキンソン病、統合 失調症、双極性障害、注意欠損多動性障害 (attention deficit hyperactivity disorder: ADHD)、薬物乱用等に関与している ことが知られている。双極性障害患者においては、C 末端 が欠損した DGK β のスプライスバリアントが確認されて いる²⁴⁾。当研究室のこれまでの研究において、DGK β 欠損 マウスは躁病様の行動を示し、それらは双極性障害治療薬 であるリチウム塩により改善されることを明らかにした ²⁵⁾。また、この DGK β 欠損マウスにおいては、スパイン形 成並びに記憶に障害が認められる^{26,27)}。これらの知見より、 DGK β は精神疾患や脳高次機能において重要な役割を果 たしていることが示唆されている。

筆者らは本研究において、DGKβ欠損マウスを用いて、

Fig. 2. The structures and classification of DGKs.DGK isoforms are classified into five types.PH:pleckstrinhomology,MARCKS:myristoylatedalanine-rich protein kinase C substrateThe figure was cited from ref 22.

高次脳機能における DGKβ の役割の解明を試みた。

DGKβ 欠損マウスの躁病様表現型に対する 双極性障害治療薬の作用

2-1. 自発活動量に対する作用の検討28)

マウスの自発活動量はオープンフィールド試験を用い て行った。縦 30×横 30×高さ 30 cm の試験装置を用い、 薬物投与後速やかにマウスを試験装置内に移し、30 分間 マウスの馴化を行った。その後 60 分間のマウスの行動を ビデオカメラにより撮影し、Etho Vision XT (Noldus, Wageningen, Netherland) により解析を行った。

これまでの検討において、DGKβ 欠損マウスは自発活動 量の増加、不安レベルの低下が認められている²⁵⁾。本検討 では、双極性障害の治療に用いられているバルプロ酸、オ ランザピンの作用を検討した。まず、これら治療薬の単回 投与による効果を検討したが、有意な改善作用は認められ なかった。

つぎに、DGKβ 欠損マウスの自発活動量に及ぼすバルプ ロ酸およびオランザピンの慢性投与の影響を検討した。オ ープンフィールド試験は、薬物投与を開始してから 15 日 目に行った。マウスの自発活動量に関して、有意な遺伝子 要因 [F(1,103) = 31.47, p < 0.01] および薬物要因[F(2,103)= 9.24, p < 0.01] の作用が認められた。また、DGKβ 欠損マ ウスで認められた自発活動量の亢進は、バルプロ酸および オランザピンの慢性投与により有意に改善された。オラン ザピンの慢性投与は、野生型マウスにおいても自発活動量 を有意に減少させたが、バルプロ酸の慢性投与は野生型マ ウスの自発活動量に影響を及ぼさなかった (Fig.3)。

Fig. 3. The effect of chronic treatment of valproate (VPA) and olanzapine (Ola) on the locomtor activity of WT and DGK β KO mice.

The distance moved during the 1-h duration of open field test. Values are expressed as the mean \pm SEM (n = 10 - 28). ##p < 0.01 vs. vehicle-treated WT mice (Student's t-test). **p < 0.01 vs.vehicle-treated WT mice, \$ p < 0.05 vs. vehicle-treated KO mice (Dunnett's test). The figure was cited from ref 28.

これらの結果より、バルプロ酸およびオランザピンの慢 性投与は、DGKβ 欠損マウスにおいて認められる自発活動 量の亢進を有意に改善することが明らかとなった。

2-2. 不安レベルに対する作用の検討28)

DGKβ 欠損マウスの不安レベルに及ぼすバルプロ酸お よびオランザピンの慢性投与の影響に関して検討を行っ た。不安レベルの指標として、オープンフィールド試験で の中央滞在時間および中央侵入回数を用いた。マウスの中 央滞在時間に関して、有意な遺伝子要因 [F(1,103) = 4.82, p < 0.05] および薬物要因 [F(2,103) = 6.71, p < 0.01] の主作 用が認められた。また、マウスの中央への侵入回数に関し ても、有意な遺伝子要因 [F(1,103) = 15.01, p < 0.01] およ び薬物要因 [F(2,103)=8.77, p < 0.01] の作用が認められた。 DGK_β 欠損マウスにおいて認められる中央滞在時間の増 加や中央への侵入回数の増大は、バルプロ酸およびオラン ザピンの慢性投与によって有意に減少した (Fig. 4)。野生 型マウスにおいては、自発活動量の結果と同様に、オラン ザピンの慢性投与は中央滞在時間および中央への侵入回 数を減少させたが、バルプロ酸にはそのような影響は認め られなかった。

以上の結果より、DGKβ 欠損マウスにおいて認められる 不安レベルの低下といった異常な行動は、バルプロ酸、オ ランザピンの慢性投与により有意に改善されることが明 らかとなった。

3. DGKβ 欠損マウスの注意欠損多動性障害様行動に対 する精神刺激薬の作用

3-1. DGKβ 欠損マウスの注意欠損様行動²⁹⁾

DGKβ 欠損マウスの注意欠損行動を検討するために、既 報³⁰に従い object-based attention test を行った。この試験に

Fig. 4. The effect of chronic treatment of valproate (VPA) and olanzapine (Ola) on the anxiety levels of WT and DGK β KO mice.

(A) Duration in the central zone, and (B) frequency in the central zone during the 1-h duration of open field test. Values are expressed as the mean \pm SEM (n = 10 - 28). ##p < 0.01 vs. vehicle-treated WT mice (Student's t-test). *p < 0.05 vs. vehicle-treated WT mice, \$p < 0.05, \$\$p < 0.01 vs. vehicle-treated KO mice (Dunnett's test). The figure was cited from ref 28.

おいては、3分間または6分間の獲得試行の後に保持試行 を行った (Fig. 5A, D)。これまでの報告において、3分間 の獲得試行の後の保持試行における成績は注意力に依存 するもの、6分間の獲得試行の後の保持試行における成績 は海馬依存性の学習に依存するものであることが知られ ている30)。3分間および6分間いずれの獲得試行において も、二種類の積み木に対するマウスの探索時間は、野生型 マウスおよび DGKβ 欠損マウスの両方において明らかな 変化は認められなかった(Fig. 5B, E)。このことから、新奇 の積み木に対する嗜好性には DGKβ の遺伝子差がないこ とが確認された。つぎに、3分間獲得試行の後の保持試行 においては、DGKβ 欠損マウスにおいては、新奇の積み木 に対する探索の割合は野生型マウスのものに比べ有意に 減少していた (Fig. 5C)。この結果より、DGKβ 欠損マウス においては、野生型マウスに比べ、注意力の低下が示唆さ れた。一方、6分間の獲得試行を行った後の保持試行にお ける野生型マウスおよび DGKβ 欠損マウスの新奇の積み 木に対する認識率においては、有意な変化は認められなか った(Fig. 5F)。このことから、物体の認識における海馬依 存学習能力においては、野生型マウスおよび DGKβ 欠損 マウス間に差がないことが示唆された。

つぎに、DGKβ 欠損マウスの注意力の低下に対するメチ ルフェニデートの作用を検討した。野生型マウスにおいて は、保持試行においてメチルフェニデート処置により新奇 の積み木の認識率の有意な低下が認められ、このことから 注意力の低下が惹起されたことが明らかとなった。一方、 DGKβ 欠損マウスにおいては、メチルフェニデートの投与 によって新奇の積み木の認識率の有意な増加が認められ た(Fig. 6)。この結果より、DGKβ 欠損マウスにおいて認め

В С A 80 Sec) < 10sec training Ĕ. 5 Recognition in 30 10 10 4 Ó Ò ۸Δ Δe .**A** WT KO D Е F n (sec) 7 §70 training <10sec 3min test ji 6 5 ation $^{\Lambda}$ Óв **•** 4 expl .**A** Δr n ± 2×10 wT ко

Fig. 5. DGK β KO mice showed an attention-deficit behavior in object based attention test.

(A) Mice were exposed to five object for 3 min (training session), then, after an interval of 10 sec, they were exposed to two objects that include a familiar and a novel objects for 3 min (retention session). (B) Object exploration time during the 3-min training session. (C) The novel-object discriminating abilities of mice were expressed as a recognition index. Values are expressed as the mean \pm SEM. (KO: n = 8, WT: n = 9) *p < 0.05 vs. WT mice (t-test). (D) Mice were exposed to five objects for 6 min (training session), then, after an interval of 10 sec, they were exposed to two objects that include a familiar and a novel objects for 3 min (retention session). (E) Object exploration time during the 6-min training session. (F) The novel object discriminating abilities of mice were expressed as a recognition index. Values are expressed as the mean \pm SEM. (KO: n = 6, WT: n = 7). The figure was cited from ref 29.

Fig. 6. The effect of methylphenidate (MPH) on the attention-deficit behavior of DGK β KO mice in the object-based attention test.

The effect of MPH on the recognition index in retention phase after 3-min training phase. Values are expressed as the mean \pm SEM. (n = 6 or 7) *p < 0.05, **p < 0.01 vs. vehicle-treated WT mice,#p <0.05 vs. vehicle-treated KO mice (Tukey's test). The figure was cited from ref 29.

られた注意欠損の表現型はメチルフェニデートの投与に より改善することが明らかとなった。

3-2. メチルフェニデート投与後の野生型マウスおよび DGKβ 欠損マウスの行動変化²⁹⁾

メチルフェニデートは ADHD の治療薬として使用され ているが、一般的に野生型マウスにおいては細胞外のドパ ミン量を増加させ、結果的に自発活動量を増加させる³¹⁾。 まず初めに、種々濃度のメチルフェニデートを野生型マウ スおよび DGKβ 欠損マウスに投与し、その自発活動量の 変化を 90 分間観察した。これまでの検討と同様、溶媒投 与を行った DGKβ 欠損マウスの自発活動量は、野生型マ ウスに比べ有意に増加した(Fig. 7A)。野生型マウスにおい て、メチルフェニデート投与を行うと自発活動量は増加し、 3、30 mg/kg メチルフェニデート投与群において有意な自 発活動量の増加が認められた (i.p., MPH 0.3 mg/kg; p = 0.318, MPH 3 mg/kg; p = 0.005, and MPH 30 mg/kg; p = 0.003 vs. vehicle-treated WT mice) (Fig. 7A)。しかしながら、DGKβ 欠損マウスにおいてメチルフェニデート投与による自発 活動量の変化は認められなかった (MPH 0.3 mg/kg; p = 1.000, MPH 3 mg/kg; p = 0.958, and MPH 30 mg/kg; p = 1.000vs. vehicle-treated KO mice) (Fig. 7A)。また、メチルフェニ デート 30 mg/kg 投与後の自発活動量の経時的な変化を検 討した。野生型マウスにおいて、メチルフェニデート投与 後に急激な自発活動量の増加が認められ、その後低下した 後、再度溶媒投与群に比べ有意な増加が継続的に認められ た (Fig. 7B)。野生型マウスに比べ、DGKβ 欠損マウスにお いては、メチルフェニデートはわずかに自発活動量を増加 させた。30~35 分の時点における自発活動量の変化にお いては、有意な遺伝的要因 [F(1,24)=9.01,p<0.01]、薬物 要因 [F(1, 24) = 31.69, p < 0.001]が認められ、また遺伝 子・薬物の作用において交互作用が認められた [F(1,24)= 14.32, p < 0.001](Fig.7C)_o

3-3. メチルフェニデート投与後のタンパク質リン酸化 レベル²⁹⁾

精神刺激薬投与後の活動量変化においては、線条体にお ける ERK1/2 のリン酸化の関連が示唆されている³²⁾。この ことから、メチルフェニデート投与後の線条体におけるリ ン酸化 ERK1/2 の発現量についての検討を行った。通常条 件下において、野生型マウスおよび DGKβ 欠損マウスの 線条体でのリン酸化 ERK1/2 の発現量に変化は認められな かった。メチルフェニデート投与 5 分後において、野生型 マウスではリン酸化 ERK1/2 の発現量が有意に増加した。 一方、DGKβ 欠損マウスではそのような変化は認められな かった (Fig. 8A, B)。また、線条体以外の部位においても、 メチルフェニデートによりリン酸化 ERK1/2 の発現量に変

Fig. 7. DGK β KO mice showed an abnormal response to methylphenidate (MPH).

(A) The locomotor activity after various doses of MPH. Each mouse was placed in a locomotor activity monitor for an initial period of 30 min and then injected with vehicle or MPH (0.3, 3, 30 mg/kg, i.p.). Horizontal activities of 90 min after drug treatment were recorded. Values are expressed as the mean \pm SEM. (n = 5) *p < 0.05 vs. vehicle-treated WT mice (t-test), #p < 0.05,##p < 0.01 vs. vehicle-treated WT mice (Dunnett's test). Each mouse was placed in a locomotor activity monitor for an initial period of 30 min (shown as arrow) and then injected with vehicle or MPH (30 mg/kg). Horizontal activity was recorded every 5 min for a 2-h period. Locomotor activity throughout the 2-h period of WT (B) and DGK β KO (C) mice. Values are expressed as the mean ±SEM. (n = 4 to 10) *p < 0.05, **p < 0.01 vs. vehicle-treated group (t-test). The figure was cited from ref 29.

化が生じるかを検討した。海馬およ海馬および前頭前皮質 において、薬物処置5分後および40分後において検討し たが、いずれの部位・時間においても、リン酸化 ERK1/2 の発現量に変化は認められなかった。この結果より、メチ ルフェニデートは線条体に特異的に作用していることが 示唆された。この線条体におけるリン酸化 ERK1/2 発現量 の変化の違いが、メチルフェニデート投与後の DGKβ 欠 損マウス自発活動量の変化に関与している可能性がある。

4. DGKβ 欠損マウスの痙攣感受性に関する検討

4-1. ペンチレンテトラゾール誘発痙攣モデルにおける 評価³³⁾

薬物誘発痙攣モデルにおいて、DGKβ 欠損マウスがどの ような反応を示すかを検討するために、まず初めにペンチ レンテトラゾールを用いてマウスにおいて痙攣を誘発し た。ペンチレンテトラゾールは GABAA 受容体のアンタゴ

Fig. 8. Western blot analysis of the phosphorylation levels of ERK1/2 in the striatum following methylphenidate (MPH) treatment.

Phosphorylated and total ERK1/2 levels in the striatum were measured by Western blot analysis. (A) Representative immunoblots showing the expression levels of phosphorylated ERK1/2 (p-ERK1/2) and total ERK (t-ERK) in the striatum of WT and DGK β KO mice 5 min after drug treatment. (B) Phosphorylation levels of ERK1/2 are quantified relative to the t-ERK1/2 levels. Values are expressed as the mean \pm SEM. (n = 5 to 8) **p < 0.01 vs. vehicle-treated WT mice group (t-test). The figure was cited from ref 29.

ニストであり、強直性間代性痙攣をマウスにおいて引き起 こす。60 mg/kg のペンチレンテトラゾールを投与後、すべ てのマウスにおいて間代性痙攣 (スコア 4)またはそれ以 上の重篤な痙攣が認められた (Table 1)。DGKβ 欠損マウス の約半数において硬直性痙攣が認められたのに対し (ス コア 5; 5/9)、野生型マウスにおいてはほとんどがスコア 4 の痙攣にとどまった (10 匹中 1 匹のマウスにおいてのみ、 スコア 5 の痙攣が生じた)。80 mg/kg のペンチレンテトラ ゾール投与後では、野生型マウスではスコア 4 以上の痙攣 が認められたマウスは 5 匹中 1 匹であったのに対し、 DGKβ 欠損マウスでは5 匹中 4 匹のマウスにおいてスコア 4 以上の痙攣が認められた。

Table. 1. Occurrence of various seizure after pentylenetetrazol (PTZ) treatment in WT and DGK β KO mice.

PTZ (mg/kg, i.p.)	60		80	
Genotypes	WT	ко	WT	КО
n	10	9	5	5
Score 4 (clonic convulsion)	10 (100%)	9 (100%)	5 (100%)	5 (100%)
Score 5 (tonic convulsion)	1 (10%)	5 (56%)	1 (20%)	4 (80%)
Score 6 (death)	0	1 (11%)	1 (20%)	4 (80%)

PTZ: pentylenetetrazol, WT: wild-type mice, KO: knock-out mice

経時的な痙攣スコアの変化の検討を行ったところ、野生 型マウスにおいては痙攣スコアは投与 5 分後に最大とな り、その後徐々に低下した (Fig. 9A)。一方、DGKβ 欠損マ ウスの痙攣スコアは高いままであった。30 分間の観察中 において、痙攣スコアの合計値は野生型マウスに比べ、 DGKβ 欠損マウスでは有意に大きかった (Fig. 9B)。しかし ながら、スコア 2、3、4 の痙攣に達するまでの潜時におい ては野生型マウスと DGKβ 欠損マウスにおいて有意差は 認められなかった(Fig. 9C)。30 分間の観察におけるスコア 2、3、4 の痙攣の発生回数が DGKβ 欠損マウスにおいて有 意に増大していた (Fig. 9D)。

Fig. 9. Behavioral changes in $DGK\beta$ KO mice after pentylenetetrazol (PTZ) treatment.

(A) Mean seizure scores per one minute, (B) total seizure scores, (C) latency to reach a given seizure score, and (D) number of occurrences of a given seizure score, in WT and DGK β KO mice after PTZ (60 mg/kg, i.p.) treatment. Values are expressed as the mean \pm SEM. (WT, n = 10; KO, n = 9) *p < 0.05; **p < 0.01 vs. WT mice (Student's t-test). The figure was cited from ref 33.

4-2. カイニン酸誘発痙攣モデルにおける評価33)

つぎに、DGKβ 欠損マウスが他の薬剤誘発痙攣モデルに おいても感受性の増大を示すか否かについて検討するた め、カイニン酸を用いて評価した。カイニン酸はカイニン 酸型グルタミン酸受容体のアゴニストであり、興奮毒性に よる神経細胞死の研究および痙攣の研究において広く用 いられている。

野生型マウスにおいては、痙攣のレベルは徐々に増大し、 薬物投与 40 分後にスコア 3 の痙攣に達した (Fig. 10A)。 DGKβ 欠損マウスにおいても、行動の経時的な変化におい ては同じようなパターンが認められたが、どのタイムポイ ントにおいても野生型マウスに比べて痙攣スコアは高値 を示した (Fig. 10A)。60 分間における痙攣スコアの合計値 は、DGKβ 欠損マウスにおいて有意な増加が認められた

Fig. 10. Behavioral changes in DGK β knockout (KO) mice after kainic acid treatment.

(A) Mean seizure scores per five minute, (B) total seizure scores, and (C) latency to reach a given seizure score, in WT and DGK β KO mice after kainic acid (30 mg/kg, i.p.) treatment. Values are expressed as the mean \pm SEM (WT, n = 7; KO, n = 8) *p < 0.05; **p < 0.01 vs. WT mice (Student's t-test). The figure was cited from ref 33.

(Fig. 10B)。しかしながら、スコア 3 の痙攣に達するまでの潜時において、両群間において明らかな差は認められなかった (Fig. 10C)。

4-3. 海馬における抑制性神経細胞数の検討33)

介在性ニューロンは神経細胞の興奮の制御において重要な役割を示しており、抑制性介在ニューロンと興奮性ニューロンのバランスの乱れは諸種病態に関与している³⁴⁻³⁰。実際、抑制性介在ニューロン数の減少は痙攣感受性の増大と密接に関連している³⁷⁾。

DGKβ 欠損マウスの痙攣感受性の増大に、この抑制性介 在ニューロン数の減少が関与している可能性が考えられ るため、海馬におけるパルブアルブミンにより染色される 抑制性介在ニューロンの数を検討した。DGKβ 欠損マウス の海馬 CA3 領域において、パルブアルブミン陽性の抑制 性介在ニューロンの数が野生型マウスに比べて減少して いた (Fig. 11A, B)。

5. 考察

高次脳機能における DGKβ の役割を明らかにするため、 本総説では DGKβ 欠損マウスの行動薬理学的解析の結果 をまとめた。

DGKβ 欠損マウスにおいて認められる過活動、不安レベ

Fig. 11. Parvalbumin-positive interneurons in hippocampal subregions.

(A) Immunostaining for parvalbumin in the hippocampus of age-matched WT and DGK β KO mice. Right panels show enlargements of the hippocampal CA3 region (shown by the box in the corresponding left panel). Scale bars = 100 µm. (B) Parvalbumin-positive cell numbers in the hippocampal subregions in WT and DGK β KO mice. Values are expressed as the mean ± SEM. (WT, n = 6; KO, n = 5) *p < 0.05 vs. WT mice (Student's t-test). The figure was cited from ref 33.

ルの低下および認知機能の低下等の異常行動は、臨床的に 躁病に対して有効であると知られているバルプロ酸やオ ランザピンによって改善されることが明らかとなった^{28)。} これらの結果は、DGKβ 欠損マウスが躁病モデルマウスと して有用である可能性を示唆するものである。

現在までに、DGK の双極性障害への関与に関してはい くつかの報告がなされている。先に述べたように、DGKβ の COOH 末端のスプライスバリアントが双極性障害患者 において見い出されており²⁴⁾、筆者らは、DGK β 欠損マウ スは過活動を主徴とする行動異常を示すことを明らかに している²⁵⁾。また、他のアイソフォームに関しても、双極 性障害への関与が示唆されている。Type II に分類される DGKη に関してもいくつかの関連報告がなされており、双 極性障害患者脳内において、DGKη mRNA 発現量が増大し ていること、DGKη の SNPs が存在することが、最近明ら かにされている^{22, 38-40)}。これらの報告は、DGKs 自身また はその下流シグナルが正常な脳機能の維持に関与してい る可能性を示唆するものである。実際、DGKs シグナルの 下流に存在する Glycogen synthase kinase-3 (GSK-3)、ホス

ホイノシトール経路、PKC 等は双極性障害において影響 を受けている分子であり、治療ターゲットとしての可能性 が示唆されている⁴¹⁾。以上、DGKβ をはじめとした DGKs の中枢神経系における役割を解明することで、双極性障害 の病態解明につながる可能性が考えられる。これまでの検 討において、筆者らは DGKβ 欠損マウスにおいて認めら れる異常行動が双極性障害に有効とされているリチウム 塩の投与により改善されることを明らかにした25)。加えて、 定型抗精神病薬であるハロペリドールの効果についても 検討を行い、ハロペリドールに関しては DGKβ 欠損マウ スの過活動や不安レベルには有意な作用を示さないこと を明らかにした25)。本研究においては、バルプロ酸および オランザピンの二種類の薬物を用い、それらの DGKβ 欠 損マウスの異常行動に対する作用を検討した²⁸⁾。バルプロ 酸はリチウム塩と同様に双極性障害の躁状態に対して広 く用いられており、数々の躁病モデル動物においてもその 有効性が示されている42-44)。その作用機序に関しては不明 な点が多いが、神経伝達物質である γ-アミノ酪酸 (γ-aminobutyric acid: GABA)の合成促進作用が抗躁作用の 一部であると考えられている。オランザピンは非定型抗精 神病薬の一つであり、過活動を示すマウスにおいてその自 発活動量に対して効果を示すことが明らかとなっている ⁴⁵⁾。オランザピンは、ドパミンやアセチルコリンの放出促 進作用を介して抗躁作用を示すことが示唆されている4%。

オープンフィールド試験における自発活動量の測定は、 統合失調症、薬物中毒、自閉症、躁病等多くの疾患モデル 動物を用いた検討で使用されている。これまでの検討にお いて、DGKβ 欠損マウスの過活動がリチウム塩の処置によ って改善されることから、この DGKβ 欠損マウスの過活 動を躁病様の行動であると仮説を立て、研究を行った。実 際、バルプロ酸やオランザピンの慢性投与によって過活動 をはじめとする異常行動は改善されたが、これら薬物の単 回投与においてはその作用は認められなかった²⁸⁾。薬物の 慢性投与は、実際の臨床においてのヒトでの使用を考えた 際には現実的なものであり、双極性障害等の精神疾患患者 においては治療薬を慢性投与して初めてその効果が認め られることが多い。動物を用いた研究においても、躁病モ デルマウスとして広く使用されているドパミントランス ポーター (dopamine transporter: DAT) 欠損マウスの過活 動もバルプロ酸の慢性投与によって改善されることが明 らかとなっている44)。この点からも、本検討において薬物 の単回投与が DGKβ 欠損マウスの異常行動に対して効果 を示さなかったことが臨床で認められる効果とも相関し ていると考えられる。以上の事からも、DGKβ 欠損マウス は躁病のモデルマウスとして有用性を示唆するものであ る。

また、DGKβ 欠損マウスが ADHD モデルとして有用で あるか否かを明らかにすることを目的としても検討を行 った²⁹。ADHD は注意の欠陥、衝動性、過活動に特徴付け られる疾患である。今回の結果から、DGKβ 欠損マウスは、 注意欠損行動と過活動が認められた。注意欠損行動に関し ては、ADHD の治療薬として用いられているメチルフェニ デートによって改善された²⁹。一方、メチルフェニデート 投与後の自発活動量の変化に関しては、実際の ADHD 患 者やモデル動物において認められる反応とは自発活動量 が抑制されなかった点で同様のものではなかった。しかし ながら、メチルフェニデートの慢性的な処置や、他の ADHD 治療薬の投与によって DGKβ 欠損マウスの過活動 が改善される可能性は十分に考えられる。現時点では、 ADHD 患者における DGKβ 遺伝子の異常等の報告はなさ れていないが、今後詳細な検討を行うことで ADHD 病態 における DGKβ の関与が明らかになると考えられる。

DGK は DG を PA に変換する酵素であり、Gq タンパク 共役型受容体の下流に存在する⁵⁾。ドパミン D2 受容体作 動薬は線条体切片において、Gq タンパク質と PLC β の結 合および細胞内カルシウムストアからのカルシウム 54 の 動員を介して ERK1/2 のリン酸化を生じる⁴⁷⁾。ドパミン D1 受容体と D2 受容体は異なる細胞に発現していると考えら れていたが、近年の研究から、ともに同じ細胞において発 現していることが示唆されている⁴⁸⁾。このことは、ドパミ ン D1 および D2 受容体の両方が ERK1/2 のリン酸化を制 御し、この ERK1/2 リン酸化制御においても DGKβ が関与 していることを示唆している。

これまでの研究から、DGKβの脳内における局在が徐々 に明らかとなってきている。DGKβの発現は神経細胞に局 在しており、先に述べたようにその発現は嗅球、海馬、大 脳皮質、線条体に認められている^{7,27)}。海馬においては、 CA1、CA2、CA3の上昇層および放線状層において発現し ており、投射ニューロンだけでなく、介在ニューロンにお いても発現していることが明らかとなっている²⁶⁾。

DGK_β 欠損マウスは薬物誘発性痙攣に対して野生型マ ウスに対してより重篤な症状を示した33)。そのため、痙攣 時のマウス海馬における DGKβ の局在と発現量に関して 検討した。過去の検討において、痙攣への関与が示唆され ている DGKε は痙攣時においては局在や発現量に変化は 認められないが、DGKε 欠損マウスではアラキドン酸代謝 の異常により痙攣症状が緩和されることが報告されてい る⁴⁹⁾。一方、DGK ζ は痙攣発作時には核から細胞質へ移行 すること、また、DGKζ欠損マウスは薬物誘発性痙攣に対 して感受性の増大を示すことが明らかとなっている50)。本 研究においては、ペンチレンテトラゾール投与後において も DGKβ の発現様式には変化は認められず、その発現は 細胞表面にとどまっていたことから、DGKβ はマウスにお いて痙攣発作時には応答しないタンパク質である可能性 が示唆された³³⁾。海馬における介在ニューロンは GABA を発現する非主要ニューロンであり、海馬各部位における

様々な種類の GABA 作動性介在ニューロンから主要ニュ ーロンへの抑制性の入力は神経ネットワークの維持に必 要不可欠である51)。カルシウム結合性タンパク質であるパ ルブアルブミン陽性の介在ニューロンは海馬の神経ネッ トワークオシレーションの同期を助ける役割を果たして いる52)。さらに、パルブアルブミン陽性神経細胞の減少は、 痙攣感受性の増大を引き起こすことが知られている^{37,} ⁵³⁻⁵⁵⁾。DGKβ 欠損マウスの海馬 CA3 領域において、パルブ アルブミン陽性細胞数の減少が認められ33)、この減少が DGKβ 欠損マウスにおける痙攣感受性の増大の要因であ ると考えられる。興味深いことに、双極性障害患者の海馬 においては、パルブアルブミン陽性介在ニューロン数の減 少が報告されている^{35,56,57)}。これまでの研究において、筆 者らは DGKβ 欠損マウスが躁病様の行動異常を示すこと 明らかにした²⁵⁾。また、双極性障害患者においては DGKβ の COOH 末端のスプライスバリアントが報告されている ²⁴⁾。ラットの脳においては、DGKβ タンパク質の発現量は 生後7日目にわずかに確認され、生後14日、28日の間に 急速に増大する ⁵⁸⁾。DGKβ タンパク質の発現量増大の時 期と同時期に、パルブアルブミン mRNA は皮質および海 馬において認められる⁵⁹⁾。これらの知見から、DGKβがパ ルブアルブミン陽性介在ニューロンの発達に関与してい る可能性が考えられる。

6. 結論

本研究において、DGKβ 欠損マウスにおいて認められる 躁病様の表現型はリチウム塩だけでなく、バルプロ酸およ びオランザピン等の他の既存治療薬によって改善される ことが明らかとなり、これはモデル動物の予測妥当性を満 たす結果であり、DGKβ 欠損マウスの双極性障害躁状態の モデル動物としての有用性をより高めるものである。また、 DGKβ 欠損マウスは注意欠損様の行動を示し、メチルフェ ニデートにより改善されることから、ADHD モデル動物に なりうる可能性も考えられる。また、DGKβ 欠損マウスの 線条体におけるドパミンシステムに異常は認められない ものの、メチルフェニデート投与後の行動変化やリン酸化 ERK1/2 発現量の変化においては特徴的な変化が認められ、 シグナル伝達において DGKβ が ADHD 病態に何らかの重 要な役割を示す可能性が考えられる。さらに、DGKβ 欠損 マウスでは痙攣感受性の増大が認められ、海馬 CA3 領域 における抑制介在ニューロンの減少が認められたことか ら、神経発達における DGKβの関与も示唆された。以上、 DGK_β は高次脳機能の制御機構において重要な役割を果 たしており、DGKβ 欠損マウスは双極性障害をはじめとす る精神疾患のモデル動物として有用であると考えられる。 また、DGKβ 欠損マウスを用いたさらなる病態の解明や DGKβ 関連シグナルの制御をターゲットとした精神疾患

に対する新規治療薬の開発が期待できる。

7. 謝辞

本研究に際して終始御懇切なる御指導ならびに御助言 を賜りました岐阜薬科大学生体機能解析学大講座薬効解 析学研究室准教授 嶋澤雅光博士および講師鶴間一寛博 士に深謝いたします。また、諸種の御協力を頂きました 薬効解析学研究室研究室諸氏に心から感謝致します。

8. 引用文献

- 1) Rhee, S.G. and Y.S. Bae, J Biol Chem, 272, 15045-8 (1997)
- 2) Nishizuka, Y., Faseb J, 9, 484-96 (1995)
- Merida, I., A. Avila-Flores, and E. Merino, *Biochem J*, 409, 1-18 (2008)
- 4) Ghosh, S., et al., J Biol Chem, 271, 8472-80 (1996)
- Kanoh, H., K. Yamada, and F. Sakane, *Trends Biochem Sci*, 15, 47-50 (1990)
- 6) Ding, L., et al., J Biol Chem, 273, 32746-52 (1998)
- 7) Goto, K. and H. Kondo, Proc Natl Acad Sci U S A, 90, 7598-602 (1993)
- Goto, K. and H. Kondo, Proc Natl Acad Sci U S A, 93, 11196-201 (1996)
- 9) Goto, K., et al., Brain Res Mol Brain Res, 16, 75-87 (1992)
- 10) Houssa, B., et al., J Biol Chem, 272, 10422-8 (1997)
- 11) Imai, S., et al., *J Biol Chem*, **280**, 39870-81 (2005)
- 12) Kai, M., et al., J Biol Chem, 269, 18492-8 (1994)
- 13) Klauck, T.M., et al., J Biol Chem, 271, 19781-8 (1996)
- 14) Sakane, F., et al., *J Biol Chem*, **271**, 8394-401 (1996)
- 15) Tang, W., et al., *J Biol Chem*, **271**, 10237-41 (1996)
- 16) Hozumi, Y., et al., J Histochem Cytochem, 61, 462-76 (2013)
- 17) Kobayashi, N., et al., Eur J Cell Biol, 86, 433-44 (2007)
- 18) Raben, D.M. and B. Tu-Sekine, Front Biosci, 13, 590-7 (2008)
- 19) Sasaki, H., et al., Cell Tissue Res, 326, 35-42 (2006)
- 20) Sato, S., et al., *Biomed Res*, **32**, 329-36 (2011)
- 21) Tu-Sekine, B. and D.M. Raben, *Crit Rev Biochem Mol Biol*, 46, 353-64 (2011)
- 22) Ishisaka, M. and H. Hara, J Pharmacol Sci, **124**, 336-43 (2014)
- 23) Hozumi, Y., et al., Eur J Neurosci, 28, 2409-22 (2008)
- 24) Caricasole, A., et al., J Biol Chem, 277, 4790-6 (2002)
- 25) Kakefuda, K., et al., PLoS One, 5, e13447 (2010)
- 26) Hozumi, Y., et al., BMC Neurosci, 10, 99 (2009)
- 27) Shirai, Y., et al., *PLoS One*, **5**, e11602 (2010)
- 28) Ishisaka, M., et al., Pharmacol. Rep, 67, 275-280 (2015)
- 29) Ishisaka, M., et al., PLoS ONE, 7, e37058 (2012)
- 30) Alkam, T., et al., Behav Brain Res, 220, 185-93 (2011)
- 31) Carlsson, M. and A. Carlsson, *J Neural Transm*, **75**, 221-6 (1989)
- 32) Beaulieu, J.M., et al., J Biol Chem, 281, 32072-80 (2006)
- 33) Ishisaka, M., et al., Neurosci. & Med, 4, 117-122 (2013)
- 34) Marco, P., et al., Brain Res Bull, 44, 47-66 (1997)
- 35) Wang, A.Y., et al., Acta Neuropathol, 122, 615-26 (2011)

- 36) Zhu, Z.Q., et al., J Neuropathol Exp Neurol, 56, 988-98 (1997)
- 37) Gant, J.C., et al., *Epilepsia*, **50**, 629-45 (2009)
- 38) Baum, A.E., et al., Mol Psychiatry, 13, 197-207 (2008)
- 39) Moya, P.R., et al., Int J Neuropsychopharmacol, 13, 1127-8 (2010)
- 40) Weber, H., et al., *Neuropsychopharmacology*, **36**, 2076-85 (2011)
- Hoertel, N., P. de Maricourt, and P. Gorwood, *Expert Opin Drug Discov*, 8, 907-18 (2013)
- 42) Rezin, G.T., et al., Mol Neurobiol, 49, 877-92 (2014)
- 43) Stertz, L., et al., Rev Bras Psiquiatr, 36, 39-46 (2013)
- 44) van Enkhuizen, J., et al., *Int J Neuropsychopharmacol*, **16**, 1021-31 (2013)
- 45) Scotti, M.A., et al., Physiol Behav, 103, 376-83 (2011)
- 46) Huang, M., et al., Brain Res, 1099, 44-55 (2006)
- 47) Yan, Z., et al., Proc Natl Acad Sci U S A, 96, 11607-12 (1999)
- 48) Valjent, E., et al., J Neurosci, 20, 8701-9 (2000)
- 49) Musto, A. and N.G. Bazan, Epilepsia, 47, 267-76 (2006)
- 50) Okada, M., et al., Cell Signal, 24, 1573-82 (2012)
- 51) Freund, T.F. and G. Buzsaki, *Hippocampus*, **6**, 347-470 (1996)
- 52) Klausberger, T., et al., J Neurosci, 25, 9782-93 (2005)
- 53) Andrioli, A., et al., Neuroscience, 149, 131-43 (2007)
- 54) Kuruba, R., et al., PLoS One, 6, e24493 (2011)
- 55) Schwaller, B., et al., Mol Cell Neurosci, 25, 650-63 (2004)
- 56) Konradi, C., et al., Arch Gen Psychiatry, 68, 340-50 (2011)
- 57) Pantazopoulos, H., et al., *Biol Psychiatry*, **61**, 640-52 (2007)
- 58) Adachi, N., et al., *Brain Res Mol Brain Res*, **139**, 288-99 (2005)
- 59) de Lecea, d.R. L., and S. J.A., E., *Brain Res*, **32**, 1-13 (1995)

9. 特記事項

本総説は、岐阜薬科大学博士論文(甲3号)の内容を中心にまとめたものである。