SOME REMARK ON THE MINIMUM MODULUS
AND THE DISTRIBUTION OF ZEROS
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1. Introdution

When a function { is holomorphic in the unit disk D, it is known that there exist
some relations between the distribution of its zeros and its minimum modulus on
circles. For example, in[1]. Bonar and Caroll proved a theorem that if the zeros
of { lie on p cqui-spaced radii of D, then for any sequence of circles J, : 2] =ra
the minium moduls of { on J, must be bounded. To prove this theorem they used

the well known formulas ([2]. p. 437) relating the Fourier coefficients of log

| £(re'®) | to the distribution of zeros of f, and probably. this seems to be the main
reason why they happened to consider the minimum modulus of { on circles
centered at the origin. But in rder to study the behaviour of f from the standpoint
of the minimum modulus, it scems to be better to consider the minimum on
arbitrary closed Jordan curves, because we have an example { such that C(f)
< JUD . Here CLE) or JU) denotes respeertively sup min - ] f(z) {:]z] = r|

or sup min | l f(z) | cz€J! where the sup is taken over all circles : | Z \ =r (0
< r < 1) orall closed Jordan curves Jin D surrounding the origin. Thus we have
hecome concerned with the following question. What conditions does f have to

satisfy in order that J(f) may be finite ¥ The aim of this remark is to give a partial



answer to this questioin.
2. A fundamental lemma

We denote by So the set of closed Jordan curves in the unit desk D, surrounding
the origin and S’y the set of curves belonging to So which are symmetric with
respect to the real axis. And further, let H be the family of functions holomorphic
in D. For an element J of So , we denote by ¢ with ¢ (0) = 0 the conformal
mapping {from the interior of J, say Dj, onto D and consider the Green's function
for Dj

g(z)=—log| ¢(2) | -~

with pole at z = 0. Then. if h is a real-valued function continuous on an analytic

curve J. its Fourier coeffcients will be defind by

c/-=—§1;fjh(z>¢(z>*"*dg(z> (G=%1,%£2..)

. . . 0
where J is to be traversed in the positive sense. Xdg(z)denotes 5‘% ds by
. g
definition and on means the outer normal. Then, we have
Proposition. co— | ¢;]1 = min h(z) for any j#0.
2 €]

Proof Consider the Fourier coefficients of a non-negative funcution

h(z) — min h(z)
z€]

and note
f]gb(z)“j X dg(z)=0 for any j#0.

Then a standard argument implies Proposition.

W e shall apply this proposition to the case in question. So. let f be a function in
H with f(0) #0 and J an analytic curve in Sy, which does not pass through any of
the zeros of [. For this ], we consider again the conformal mapping ¢ and the

Green's function g as in the paragraph preceding Proposition and denote by



cj=—-§~1“7;~.f;{log|f(z)| } ¢(z)7 X dg(z)

the Fourier coefficients of log | f(z) l on J. Using almost the same methods as in
{2]. we shall derive the standard formulas below involving ¢; and the

distribution of zeros of {. Namely, we shall give

Lemma. Let zy, zy, .. .. zn be the zeros of { in Dy, listed according to multiplicity and

denote by Am,am the m-th Maclaurin cofficients of { 55—} 7 log f(z) respectively.

¢ (
Then

) co=log | £(0) | = % log| ¢z |
k=1

(2) 51—-2 anh, m+ 2 Loz —¢(z)' ) (>0)

wheve as for logarithm some determination is to be used.
Proof The first equality (1) easily follows from applying Green's formulas to
log | f{z) | and g(z) which are harmonic in the domain
D,—{z:|f(z2) | <e} —{z:|p@) | <

with some small € > 0. To show (2). we first set

(3) c/= fj{iog f(z) } Re {¢(z)7'} Xdg(z)

(4) ¢/ = fj{log f(z) Y Im{ ¢(z)7'} Xdg(z)

Then obviously there holds
{(5) —2nc;=Recj+i Rec].

Next, we represent J by the equation z=z(s) 0 < s < L where L is the length
of ], and evaluate the right-hand sides of (3), (4) by integration by parts,
rewriting them in terms of real integrals. And again we represent the results in
terms of complex integrals. Then (3). (4) become as follows:
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(3) ej= 2]1f ]}((ZZ)) {p(z))—¢(2)77 } dz

, o1 [ f(2) i -
(4) c; 2jf]f(z) {p(z)/—¢(z)”’ } dz

Finally. the residue theorem yields (2) together with (5).
3 Estimation of the minimum modulus

Now our principal result is the following

Theoreml. Let fbe a functon in H and p the multiplicily of the origin as a possible
f(2)
P

zero of . Further, denote by a; the j-th Maclaurin coe ffeient oflog where some

determination of logarithm may be used. 1f the zevos of [ lie on the radius (0. 1), then
there holds

(6) min { | f(z)|:z € J} <exp{Re a+ |ail )

for any ] in S,

Proof Without loss of generality we may assume that J is analytic. Further, if {
vanishes on J, there is nothing to be proved. So let f{z)# 0 on Jand consider, to
make use of Lemma, a holomorphic function F(z) such that
(7) f(z)=2’F(z)exp { aptaiz}

Then clearly F(0) =1, while racalling that ao, a; are given by the Maclaurin

expansion

10g‘[( =a,+taztaz’t -

we obtain
logF(z) =a,z*+asz’+ -
Therefore, letting zy. zs. . . .. zo be the zeros of F in Dy, we apply Lemma with j=

1 to F. Then by the proposition, we get
” 1 & VN . .

— 2 log| ¢ (2" | ""2*| S ) 1—¢(z) ) | = min {log|F(z) |:z€]}
k=1 k=1

Since, Jis symmetric with respect to the real axis and z is positive. ¢ (z¢) also
becomes positive, if we let ¢°(0) » 0. Hence. making note of an clementary

__4_



inequality
Xx—x1'>2log x (x>1)

and then observing (7), we conclude that (6) is valid.

In the next theorem, we shall put on the function f the assumptions such that its

zeros lie on the radius (0, 1) and f(z) =f(;). and try to estimate from above not
C(f) but J(f). Therefore, in order that this theorem may not become vain, we have
to find an f which additionally satisfies C(f) < J(f). For this aim, let A be the
only poditive root of the equation

*+2x*~1=0

and set a=(1—A)(1+A)"'. Then the function

fl)=-2"%ex (— 1“2)
1 —az°*P 1+z
becomes such one. To see this, we have only to consider its minimum modulus

on circles: | (@a—z) (1 —az)"'| =t (a<t<1). Now we shall give

Theorem 2. Let{ be a function in H and suppose that its zeros lie on the radius (0,

1). If its Maclaurin cofficients are all real, i, e, . flz) mf(7:;‘ then we have
J () <exp {Re ap+ |a| }.
Proof Let ] be any element of S, and consider the component of the open set D;
— (—1, 1) whose boundary contains the origin and which is included in the
upper half of D. Then its boundary contains a Jordan arc J, which is a subarc of ]

and which connects a point of (0, 1) with one of (—1,0) in the half disk. So we
denote by J: the reflection of J, with respect to the diameter (—1, 1) and apply

Theorem 1 to the element JoU ], of S'. Thus, our assertion follows.



Remark. If there is a sequence of J, in Se such that min { | f@) |:zeJ, 3t —

0 a5 n— . [ is called annular [1]. Therefore, we see that such an f deseribed

in Theorem 2 is not annular.
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