ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 教員研究業績
  2. 薬化学研究室
  3. 原著論文

Fe(II) Ion Release during Endocytotic Uptake of Iron Visualized by a Membrane-Anchoring Fe(II) Fluorescent Probe

https://gifu-pu.repo.nii.ac.jp/records/13275
https://gifu-pu.repo.nii.ac.jp/records/13275
08cd599c-7100-4ee7-852d-15a5b2204f14
Item type 研究室原著論文(1)
公開日 2018-01-03
タイトル
タイトル Fe(II) Ion Release during Endocytotic Uptake of Iron Visualized by a Membrane-Anchoring Fe(II) Fluorescent Probe
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
抄録
値 Iron is an essential transition metal species for all living organisms and plays various physiologically important roles on the basis of its redox activity; accordingly, the disruption of iron homeostasis triggers oxidative stress and cellular damage. Therefore, cells have developed sophisticated iron-uptake machinery to acquire iron while protecting cells from uncontrolled oxidative damage during the uptake process. To examine the detailed mechanism of iron uptake while controlling the redox status, it is necessary to develop useful methods with redox state selectivity, sensitivity, and organelle specificity to monitor labile iron, which is weakly bound to subcellular ligands. Here, we report the development of Mem-RhoNox to monitor local Fe(II) at the surface of the plasma membrane of living cells. The redox state-selective fluorescence response of the probe relies on our recently developed N-oxide strategy, which is applicable to fluorophores with dialkylarylamine in their π-conjugation systems. Mem-RhoNox consists of the N-oxygenated rhodamine scaffold, which has two arms, both of which are tethered with palmitoyl groups as membrane-anchoring domains. In an aqueous buffer, Ac-RhoNox, a model compound of Mem-RhoNox, shows a fluorescence turn-on response to the Fe(II) redox state-selectively. An imaging study with Mem-RhoNox and its derivatives reveals that labile Fe(II) is transiently generated during the major iron-uptake pathways: endocytotic uptake and direct transport. Furthermore, Mem-RhoNox is capable of monitoring endosomal Fe(II) in primary cultured neurons during endocytotic uptake. This report is the first example that identifies the generation of Fe(II) over the course of cellular iron-uptake processes.
書誌情報 ACS Chemical Biology

発行日 2018-01-03
DOI
値 10.1021/acschembio.7b00939
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 08:57:25.202412
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3