ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 教員研究業績
  2. 薬物動態学研究室
  3. 原著論文

In vitro metabolic profiles of adamantyl positional isomers of synthetic cannabinoids

https://gifu-pu.repo.nii.ac.jp/records/14128
https://gifu-pu.repo.nii.ac.jp/records/14128
6601b42c-e0b2-4247-9e28-e6dc63ec5d53
Item type 研究室原著論文(1)
公開日 2020-05-27
タイトル
タイトル In vitro metabolic profiles of adamantyl positional isomers of synthetic cannabinoids
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
抄録
値 Purpose
Illegal use of synthetic cannabinoids (SCs) is a serious problem worldwide. Legal regulation of SCs requires fundamental analytical studies regarding the differentiation of potential structural isomers. Accumulation of SC metabolic profiles is also essential for forensic investigation because SCs are immediately metabolized after intake. Thus, we investigated the in vitro metabolism of N-adamantyl-1-(tetrahydropyran-4-ylmethyl)-1H-indazole-3-carboxamide isomers (ATHs) using human liver microsomes (HLMs). Moreover, we validated the applicability of the isomeric differentiation by investigation of N-adamantyl-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide isomers (AFUs).

Methods
Metabolites were collected at designated time points during the incubation period with HLMs for up to 180 min. The structures of the metabolites were annotated on the basis of mass spectroscopic evidence obtained by liquid chromatography–ion trap–time of flight mass spectrometry.

Results
The secondary stage mass (MS2) spectra obtained from the protonated molecules revealed a clear difference in both ATHs and their major metabolites because of the stability of the adamantyl (AD) cation. In HLMs, ATHs were quickly metabolized, and hydroxylation of the AD ring was deduced as the major metabolic pathway. The major metabolites of ATH 1 and ATH 2 after 180 min showed dihydroxylation and monohydroxylation of the AD ring. The AFUs showed analytical and metabolic profiles similar to those of the ATHs described above.

Conclusions
We characterized the metabolism of ATHs for the first time and discriminated between the two isomers by mass spectrometric analysis of either the parent compounds or their major metabolites. Our investigation of AFUs also demonstrated a useful method for distinguishing between AD isomers.
書誌情報 en : Forensic Toxicology

発行日 2020-05-27
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 07:45:43.312989
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3